您好!欢迎光临工博士商城

安川机器人售后服务

产品:83    
联系我们
联系方式
  • 联系人:庾经理
  • 电话:18616561800
  • 邮件:ywk@gongboshi.com
  • 手机:18616561800
站内搜索
 
新闻分类
友情链接
首页 > 安川机器人技术资料 > 机器人视觉存在的问题及研究方向
安川机器人技术资料
机器人视觉存在的问题及研究方向
发布时间:2020-02-04        浏览次数:273        返回列表
 
       大概是从09年或者10年开始,随着普通用工成本提高、苹果产品的大卖以及带来的硬件成本的降低,机器视觉似乎从应用层面上得到了大的发展。在这一片“繁荣”的景象背后其实还有很多被忽略或者忽视的问题:

       1、人才的稀缺。目前真正意义上的从业人员缺少科班出身,缺少对图像处理的底层理论认知和理解。机器视觉中图像处理是极为重要的一环,而目前大多数从业人员是本科或者大专毕业,或者是电气工程师新入行,基本都比较缺乏图像处理的基本理论,很多理论还停留在对“视觉嘛,就是对比嘛”“视觉嘛,就是二值化”等认知上。待遇。虽然相对于普通的自动化从业者而言,机器视觉工程师待遇还是不错的,但是却难以吸引到硕士或者博士进行过专门图像处理学术训练的人加入,因为随便加入那个互联网大公司做图像相关工作,待遇都能把自动化从业的工程师甩出几条大街。另外,机器视觉更多的应用是属于自动化设备这一块。

安川机器人
       
        而自动化属于比较交叉的学科,涉及到机器视觉,需要了解的东西包括、电气、运动控制、机械、光学、软件编程等。这些学科了解一些基本的东西不难,但是研究的比较透彻并能高效率的综合运用就比较难了。

2、图像处理的不确定性在我的理解机器视觉仅仅算是计算机视觉的一个微小分支,所以机器视觉主要还是指工业方面的应用。目前的工业应用主要需求有:测量、外观检测、条码、字符识别、定位。而这几个方面机器视觉还没有一个能真正意义上实现批量化检测的同时保证极高的准确率,极小的误检率和杜绝漏检。这个目标不能实现,降低了机器视觉的应用预期。因为机器视觉设备不能完全解决,还是需要人复查,除非客户的标准没有那么高。

另外,几个应用类型目前存在的问题:
       (1)测量。目前无法给出一个明确的测量的精度要求或者指标。比如测量尺寸,使用千分尺、游标卡尺可以给出标准的测量精度是0.001mm或者0.01mm,但是视觉呢?只能给到有参考意义的0.01mm/pixl。多了个/pixl,就多了很大的差别,因为不同的外部光照环境、产品轮廓或者边界、不同的软件算法结果都可能带来重复测量结果的差异。另外,随着产品尺寸的扩大,均匀光照、镜头畸变、单位像素尺寸大小都大大降低了精度范围。

       (2)外观检测。外观检测目前是迫切的需求,也是难实现并推广的应用领域。因为产品的外观缺陷是千差万别,受到影响的可能性非常大。比如弧面、划痕的深浅和方向、材料的反光、不同材质表面对不同光的反射不同等等。总而言之就是是受到千差万别的缺陷类型和无法控制的约束条件限制。因为上了视觉系统,很少人期望只检测某一种类型。安川机器人伺服模块

       (3)条码。目前条码使用标准条码枪还是多的。

       (4)字符识别。标准印刷体还比较好实现,如果是一些金属蚀刻、雕刻等字体的识别比较难。

       (5)定位应用的还算是不错,比较稳定可靠。本身应用特点和技术瓶颈限制了行业发展。3.行业的发展态势的限制。一直感觉中国人擅长的是把一个朝阳产业做成夕阳产业。有人感觉视觉行业赚钱了,都一窝蜂往里面头,表面上降低了行业的应用成本,但是刚进来的人忽略了行业里面不确定性带来的技术支持或者服务的人力成本,导致行业的逐渐出现一些恶性竞争或者通过低成本进行竞争。对客户而言,觉得成本降低是好事,但是结果却可能导致项目识别。(视觉行业项目开发可能调试周期较长,项目失败影响没有连续失败那么震撼的感觉,同时一年失败一两个项目在一些人眼里也是能接受的。)

安川机器人
       一些系统集成商或者代理商的急功近利以及一些客户的短视的小算盘使行业偏离了良性发展的方向。由价格战带来了大家都玩不转。类似可以参考光伏产业的发展态势。4.软硬件技术。不谈自主知识产权。国内硬件核心部件(相机和镜头)和软件算法包还是老外的产品,国内也出现了一些替代产品,从性能上和老外PK还有很大的差距。

       (6)如何准确、高速(实时)地识别出目标。


       (7)如何有效地构造和组织出可靠的识别算法,并且顺利地实现。这期待着高速的阵列处理单元,以及算法(如神经网络法、小波变换等算法)的新突破,这样就可以用极少的计算量高度地并行实现功能。


       (8)实时性是一个难以解决的重要问题。图像采集速度较低以及图像处理需要较长时间给系统带来明显的时滞,此外视觉信息的引入也明显增大了系统的计算量,例如计算图像雅可比矩阵、估计深度信息等等。图像处理速度是影响视觉系统实时性的主要瓶颈之一。


       (9)稳定性是所有控制系统首先考虑的问题,对于视觉控制系统,无论是基于位置、基于图像或者混合的视觉伺服方法都面临着如下问题:当初始点远离目标点时,如何保证系统的稳定性,即增大稳定区域和保证全局收敛;为了避免伺服失败,如何保证特征点始终处在视场内。


好的方面
1.人才。从业人员增加了,技术普及带来的人员技术层次也得到了提高。
2.目前主要针对一些特定的能批量检测和视觉定位的项目,技术还是比较可靠的。
3.进入的企业多了,也许是一次重新洗牌的过程,优胜劣汰,关键是大家能坚持得下去。
4.国内一些企业的自主产品还是有了不小的份额,处于发展的态势。


了解更多安川机器人、安川机器人伺服模块信息可点击咨询:http://yaskawa-robotics.gongboshi.com/



 

联系热线:18616561800 联系人:庾经理 联系地址:上海市宝山区富联一路98弄6号

技术和报价服务:星期一至星期六8:00-22:00 安川机器人售后服务

返回
顶部